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I. Phys. A: Math. Gen. 28 (1995) 62116226. Printed in the UK 

Quantum Jacobi-hdi and Giambelli formulae for U, (B,?)) 
from the analytic Bethe ansatz 

Atsuo Kunibats, Yasuhuo Ohtat11 and Junji Suzukitq 
t Institute of Physics, University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153 Japan 
t Facuhy of Engineering. Hiroshima University. Higashi Hiroshima. Hiroshima 724 Japan 

Received 30 lune 1995 

Abstract The analytic Bethe ansau is executed for a wide class of finite-dimensional Uq(B!’)) 
modules. They are labelled by skew-Young diagrams which, in general, contain a fragment 
corresponding to the spin representation. For the uansfer matrix specua of the relevant vexex 
models, we establish a number of formulae, which are Uq(B!”) analogues of the classical 
ones due Io Jacobi-Tmdi and Giambelli OD Schur functions. They yield a full solution Io 
the previously proposed functional relation (T-system), which is a Toda equation on discrete 
spacetime. 

1. Introduction 

In [KSI] the analytic Bethe ansatz was worked out for all the fundamental representations 
of the Yangians Y(X,) of classical types X, = E,,C, and D,. Namely, for any a E 
[ 1,2,. . . , r ) ,  a rational function AY’@) of the spectral parameter U has been constructed, 
which should describe the spectrum of the transfer matrices of the corresponding solvable 
vertex models. It is a Yangian analogue of the character of the auxiliary space and satisfies 
a couple of conditions required for it. In particular, Ar’(u) has been shown to be pole-free 
provided that the Bethe ansatz equation (BAE) holds. These results are also valid for the 
U4(X!’)) case as after replacing the rational functions by their natural q-analogues. See 
[R, KSI] for general accounts on the analytic Bethe ansatz. 

In this paper we extend such analyses beyond the fundamental representations for 
X, = E,. We introduce skew-Young diagrams h c f l  [MI and a set of tableaux on 
them obeying certain semi-standard-like conditions. Then we consttuct the corresponding 
function ThCw(u) in terms of a sum over such tableaux via a certain rule. The ThCw(u) is to 
be regarded as the spectrum of the commuting transfer matrix with auxiliary space labelled 
by A c .U. It has a dressed vacuum form (ow) in the analytic Bethe ansatz. We shall rewrite 
TA~,,(u) in several determinantal forms, where the matrix elements are only those T,(u) for 
the usual Young diagrams with shapes f l  = (1‘). (m) or (m+ 1.1‘). They can be viewed as 
Uq(BL1)) analogues of the classical Jacobi-Trudi and Giambelli formulae on Schur functions 
[MI. Pole-freeness of the TA,-,(u) under BAE follows immediately from these formulae and 
our previous proof for the case p. = (la) [KSI]. These results correspond to the case where 
the auxiliary space is even with respect to the tensor degree of the spin representation. 
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We shall simply refer to such a case as spin-even and spin-odd otherwise. See the remark 
after (3.12) for a precise definition. We will also treat the spin-odd case by using modified 
skew-Young diagrams and semi-standard like conditions on them. Combining these results, 
we obtain a full solution in terms of the DVF to the transfer matrix functional relation (T-  
system) proposed in [KNSI. This substantially achieves our program raised in [KSl] for 
B, . 

A natural question here is, what is the finite-dimensional auxiliary space labelled by 
those skew-Young diagrams as a representation space of Uq(Ej l ) )  or Y(E,)? We suppose 
that it is an irreducible one in view that all the terms in TA,,@) are coupled to make the 
associated poles spurious under BAE. Moreover, we specify, in the Yangian context, the 
Drinfeld polynomial explicitly based on some empirical procedure. We shall also determine 
how the irreducible Y(B,) module decomposes as a B, module through the embedding 
E, ~f Y ( & )  for the spin-even case. 

This paper is organized as follows. In the next section we recall the results in [KSll 
on Uq(Bj')). We then introduce the basic functions TQ(u) and T,(u) for all a , m  E Zao. 
These are analogues of ath anti-symmetric and mth symmetric fusion transfer matrices (or 
its eigenvalues), respectively. For 1 < a < r - 1, we have T'(u) = AY'(u) = q,&) 
in the above. The introduction of To@) with a > r is a key point in this paper and we 
point out a new functional relation (2.14) between them. In sections 3 and 4, we treat the 
spin-even and odd cases, respectively. In terms of the DVFs in these sections, we give, in 
section 5, a full solution to the T-system [KNS] with an outline of the proof. Until this point 
we will consider exclusively the situation where the quantum space is formally trivial. This 
means that the vacuum part in DVF is always 1 as well as the 'left-hand side' of the BAE. 
In this situation, the DWS in, theorems 2.1, 3.1,4.1 and 4.2, in fact, become constants if the 
BAE (2.1) is valid. Section 6 includes a discussion on how to recover the vacuum part for 
general quantum spaces, and make the DVFS u-dependent while keeping their pole-freeness. 
A prototype of them is a tensor product of the irreducible finite-dimensional modules such 
as (6.1). The problem is essentially equivalent to specifying the left-hand side of the BAE 
(cf section 2.4 in [KSl]) for such a genera1 quantum space. For the Yangian Y(X,), we 
propose quite generally for any X, that it is just given by a ratio of the relevant Drinfeld 
polynomialst: see equation (6.2). Then we shall briefly indicate a way to recover the 
vacuum parts. 

Many formulae in section 3 are also formally valid for U9(AL')) under a suitable 
condition. In particular, the A = q5 case of (3.5) has appeared in [BR], for which a 
representation theoretical background is available in [C]. 

We hope to report similar results for C, and Dr cases in the near future. 

2. Review of the results on fundamental representations 

Here we shall recall the Br case of the results in [KSI]. Let (a1, .. . , ar} and [A,, . . . , A7J 
be the set of the simple roots and fundamental weights of B, (r > 2). Our normalization is 

(c&JAb) = Sob/ fa .  The U9(E:')) BAE for the trivial quantum space reads [RWl 
t ,  = ... = f,-1 = $fr  1 for ta = 2/(%1%). Then (CklCLb) = $&.b - 8n.b-l - 80,6+1 and 

t We thank E K Stdymin and V 0 Tarasov far a discussion an this point. 
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where [U] = (q" - q-')/(q - q-') and NI,. . . , N, are some positive integers. Throughout 
the paper we assume that q is generic. The LHS of (2.1) is just -1 as opposed to the 
non-trivial quantum space case (6.2). which will be discussed in section 6. Until then we 
shall focus on the dress parts in the analytic Bethe ansatz. 

Following [KSll we inwoduce the set J and the order < in it as 

For a E J ,  define the function z(a; U) by 

( 2 . 3 ~ )  
(2.3b) 

(2.4) 

Q,-l(u +2r  - -a  - ~ ) Q , ( u  + 2 r  --a + 1) 
ea-, (U + Zr - a)Q,(u + 2r - a - 1) 

z(E: U) = l < a < r  

where we have set Q&) = 1. z(a, U) is the dress part of the box in (4.4~) of [KSl], 
which corresponds to a weight in the vector representation: For (Cl, . . . ,4) E {+y, define 
the function sp(f1, . . . , cr; U )  by the following recursion relation with respect to r and the 
initial condition r = 2:. 

sp(+ ,  + , e3 - .  . . , tr; U )  = zQsp(+ ,e3 , .  . . , e r ;  U) 

(2%) 

(2.56) 
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for any function F. sp(.& . . . , er; U )  is the dress part of the box 1 .$1,52, . . . ,er 1 in (4.25) 
and (4.26) of [KSl]. 

Now we introduce the meromorphic functions T'(u) and Tm(u) of U for any a, m E Z+,, 
by the following 'non-commutative generating series': 

(1 + z(i; u)x) .  . . (1 + ~ ( 7 ;  U)X)(I - ~(0; U)x)-Vi + Z(T; u)x).  . , (1 + z ( ~ ;  U ) X )  
m 

= C T ' ( u + a - l ) X f l  (2.7~) 

(2.7b) 

where X is a difference operator with the commutation relation 

X Q n ( u )  = Qa(u + 2 ) X  for any 1 6 a 4 r . (2.8) 

Thus Xz(a; U) = z(a; U + 2)X for any a E J .  We set P(u) = T,(u)  = 0 for a. m < 0. 
An immediate consequence of the above definition is 

L1 

(2.9~) 

N 
= x(-)'-'T+a(u - i - k)T'-j(u - k - j )  (2.96) 

Ir=o 

for any N 2 0 and 0 < i, j 4 N.  Define T?'(u) for 1 6 a 4 r by 

T,@)(U) = ~ " ( u )  for 1 < a < r - 1 

TY)(U) = SP( t1 , .  . . ,CA U ) .  
1 I..... <,=* 

Then TF)(u) coincides with the dress part of A?)(U) in [KSl] for all 1 < a 4 r. 

(2.10) 

Theorem 2.1. TY)(u) ,  Tu@) and T,(u)(t/a, m E Z) are pole-free provided that the BAE 
(2.1) holds. 

For T f ) ( u )  and T o @ )  with a < r - 1, this was proved in [KSl] in the more general setting 
including the vacuum parts. The other cases can be verified quite similarly. Ty)(u) and 
TT'(u) were considered earlier [RI. 

The functions z(u; U )  and ~ ~ ( 5 1 , .  . . , &; U )  are related as follows. Given two sequences 
(ti, ... , e r )  and (q l , .  . . , q?) E [i)', we define il < . . . i in, Il c . . . c I,-' (0 < k < r )  
and j ,  < . . . c j,, J1 < . . . c .Ir-! (0 < 1 4 r )  by the following: 

(2.11) 

Then we have 
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Proposition 2.2. For any a E Z>o, 

s p ( h  , . . . ,~~ ;  u - r + a + t ) s p ( r l l  , . . . .q, ; u + r - a - h )  

= frz(b,; U + a  + 1 -2n) if k + l  ( a  
"=I 

where 

for I ( n $ k  
6, = 0 for k < n < a - l  (L j0+l- .  for a - l < n ( a .  

For any a E Z<Z,-I. 

s p ( h  .... :&;U - r + a  + : ) s p ( q 1 , _ . . ,  qr; u + r  - a  - 4) 

n=l 

(2.12a) 

(2.12b) 

where 

for 1 < n f r - I  
bh= 0 .  for r - l < n ( r + k - l - a  (2.136) {L 

12,-o-n for r + k - ~ l - a < n ( 2 r - l - a .  

This enables the evaluation of the product sp((1, . . . ,&; u - r + a + $ ) s p ( q l , .  . . , qr ;  U+ 
r - a  - i) for any {.5], {vi) and a E Z in terms of z (equation (2.4)). For 1 ( a 4 r - 1, 
(2.12) is theorem A:l in [KSl]. It is straightforward to extend it to any a E Z ~ O .  
Equation (2.13) can be derived from (2.12) by replacing a by 2r - 1 -a. Note in (2.126) 
that bl < . . . < bk < bktl = . . . = b,-l = 0 ba-i+l < . . . < b, E J .  A similar inequality 
holds also for bh. Comparing them with (2 .7~)  and (2.10) we get 

Theorem 2.3. 

?(U) + T"-'-o(u) = T?)(U - r  + a  + +)T?)(U + r  - a  - 1) VU E Z. (2.14) 

This is invariant under the exchange a ff 2r - 1 - a .  If a < 0 or a > 2r - I, there is 
in fact only one term on the LHS. The new functional relation (2.14) will play an important 
role in this paper. It is also valid after including the vacuum parts. See section 6.  

3. Spin-even case 

Let p = (plr p2, . . .), p1 > p2 > . . . > 0 be a Young diagram and p' = (pi, p;, . . .) be its 
transpose. We let dp  denote the length of the main diagonal of p. By a skew-Young diagram 
we mean a pair of Young diagrams h c p. It is  depicted by the region corresponding to 
the subtraction fi - A.. See figure 1, for example. 

For definiteness, we assume that A:) = A.,; = 0. A Young diagram p is naturally 
identified with a skew-Young diagram @ c y. By an admissible tableau b on a skew-Young 
diagram A C I.L we mean an assignment of an element b(i, j )  E J to the ( i ,  j) th box in 
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Figure 1. An example of a skew-Young diagram ). c w.  Here w = 
(5, 42, I ) ,  A = (2. I) .  &' = (4. 33, 1) and A' = (2, I ) .  respectively. The lengths 
of the main diagonal are given by dr = 3 and di = 1. 

A c p under the following rule: (we locate (1 ,  1) at the top left comer of p, (i + 1 ,  j )  and 
(i, j + 1) to the below and the right of (i, j ) ,  respectively.) 

b(i ,  j )  5 b(i ,  j + 1) 

b(i, j )  = b(i ,  j + 1) = 0 is forbidden 

Without the exception this coincides with the usual definition of the semi-standard Young 
tableau. Denote by Atab(A c p) the set of admissible tableaux on A c p. 

Given a skew-Young diagram A c-p, we define the function zcc(u) as the following 
sum over the admissible tableaux: 

b(i ,  j )  < b(i + 1, j )  with the exception that 
(3.1) 

b(i ,  j )  = b(i + 1, j) = 0 is allowed. 

T A C ~ ( U )  = n z(b(i, j ) ;  U + p; - pi - 2i + 2 j ) .  (3.2) 
b€Alab(ACn) (i.j)€(Acn) 

Comparing this with (2.7) we have 

Tn(u) = q p ) ( u )  : single column of length a 
T, (U) = ?,&) : single row of lengh m . 

We also prepare a notation for the single hook, 

GJ = q/+1,1+0 

Our main result in this section is 

Theorem 3.1. 

where 

( 3 . 3 ~ )  
(3.3b) 

(3.3c) 

(3 .44  

(3.4b) 
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Two paaicular caes  corresponding to the formal choices pi = hi or flj = hi for 
1 < i < dA = df l  yield simpler formulae. In these cases, redefining pi ,  p;, Ai and 1; so that 
1' = 1,; = 0, we have 

T A C ~ ( U )  = deti<i,jcrl ( p : - + i + j ( u  + p; - - ' + z + j - l ) )  . ( 3 . 5 ~ )  
(3.5b) 

Equation ( 3 . 5 ~ )  can be verified, for example, by induction on p,, i.e. by showing the 
same recursive relation for the tableau sum (3.2) as an expansion of the determinant. Then 
(35b)  follows from (2.9). Theorem 3.1 is proved from these results by applying Sylvester's 
theorem on determinants. From equation (3.50) and theorem 2.1 one has 

CoroUary. T A ~ ~ ( u )  is pole-free provided the BAE (2.1) holds. 

The admissibility condition (3.1) leads to the above conclusion although it is by no 
means obvious in the defining expression (3.2). Despite the exception in (3.1), ow formulae 
(3.4) and (3.5) coincide formally with the classical ones due to Giambelli and Jacobi-Trudi 
on Schur functions [MI if one drops the U dependence (or in the limit JuI + CO). If 
pi+1 - hi > 2r for some i, Atab(A c p) = 9. Correspondingly, one can show that 
the determinant (3.5a) is vanishing using the fact that T"(u) factorizes for a 2 2r due 
to theorem 2.3. Henceforth we assume that /.&I+, -Ai < 2r for 1 < i < PI. (We set 

The T A ~ ~ ( u )  (equation (3.2)) describes the spectrum of the transfer matrix whose 
auxiliary space is labelled by the skew-Young~diagram A 'C @ and U. Denote the space by 
W A ~ ~ ( U ) .  We suppose it is an irreducible finite-dimensional module over Y(B,) (or Ug(Bj l ) )  
in the trigonometric case) in view that all the terms in (3.2) seem to be coupling to make the 
apparent poles spurious under BAE. Now we shall specify the Drinfeld polynomial Pa(() 
[D] that characterizes W A ~ , ( U )  based on some empirical procedure.~Our convention slightly 
differs from the original one in theorem 2 of [D] in such a way that 

PI 

= det,Gi,ja; (Tfl,-~;+i-j(U + fl; - + gj +A;  - i - j + 1)). 

PL:*+l = -mJ 

For any b E Atab(A c g), the corresponding summand (3.2) has the form 

Q.(u +xf)... Q.(i +xP,) 

a=l Q& + y f )  . .: Q.@ + Y:) 
where 1;. y; and i, are specified from b. This summand carries the &-weight 

(3.6) 

(3.7) 

in the sense that l iq , ,  (3.7) = q - z ( w r ( b ) l ~ ~ = l  From Atab(A c p), take bo such that 
wt(b0) is highest, which corresponds to the 'top term' in section 2.4 of [KSl].  In our case, 
such a bo is unique and is given as follows. Fill the left most column of A c p from the top 
to the bottom by assigning the first gi - A; letters from the sequence 1.2, . . . , r, 0.0, . . . . 
Given the (i - 1)th column, the ith column is built from the top to the bottom by 
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3 0  

0 

Figure 2. The way to s i g n  the leuen to each box is explained in the text. This is an 
example for r = 3, U' = (9,7.2). A' = (3, 1). Norice that m s  are arranged so they are 
not adjacent horizonrally. 

k -- - 
taking the first &I -A{ letters from the sequence 1,2, . . . , r, 0, . . . ,O, i, r - I ,  . . . , 1, where 
k = max(0, min(Xf-, -1;. pf -1; - r ) ) .  (We set 1; = +w.) See the example in figure 2. 

It turns out that (3.7) for the top term bo can be expressed uniquely in the form 

(3.9) 

for some Ma and {z ; [ l  < j < Ma) up to the permutations of 27's for each Ci. We then 
propose that the Drinfeld polynomial Pdy""'"'(5) for W~=&(U) is given by 

(3.10) 

1 < u < r -  1 

(3.11a) 

(3.116) 

where we have set 

(3.12) 
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We will call the irreducible finite-dimensional Y (B,) module spin-even (respectively spin- 
odd) if and only if the characterizing Dnnfeld polynomial !',(<) is even (respectively odd) 
degree. The one in (3.11b) is even for any skew-Young diagram h c p. For example, in 
the case of the single column or row (3.3), (3.11) reads 

(C - U)L' l < c < r  

((< - U + c - r +, ;)(< - U - c + r (3.13a) 
c > r  I ( 5 )  = 

!'aWW,(U) 

P~~""'(<) = ((< - u + m - I)(< - u + m - 3). . . (< - u - m + l))'al . (3.13b) 

As a B, module, the Y(B,) module WA,,(U) decomposes as 

(3.14) 

which is u-independent. Here LRf", etc denote the Littlewood-Richardson coefficients 
for the universal character ring A of GL-type introduced in [KV. The sums run over all 
the Young diagrams 7. U and K = (KI. ~ 2 , .  . .), where (2K)' stands for the transpose of 
2~ = ( 2 ~ ~ .  2Kz,. . .). aoc2+l,(Vq) is the image of the specialization homomorphism [Kq. 
It is equal to ( f l  or 0) 'times' the irreducible B, module V,. with the highest weight 
labelled by the Young diagram 7' with (q*); < r .  They are determined according to the 
equality no(zr+~)(x(q) )  = ( k l  or 0) x x(q*)  at the character level [KV. 

4. Spin-odd case 

Consider the following subset Spin c Atab((1')): 

i l  < . . . X i ,  E J 
0 is not contained 
only one of i and 

E Spin o 
(4.1 is contained for any 1 6 i < r 

[ {  1, 

There is a bijection L : Spin --f ((61, . . . , er) I t j  =~ zk) sending (4.1) with 1 5 il < . . . < 

. . . = & = -, where we interpret = i if k = 7. Thus the latter of (2.10) can also be 

For a skew-Young diagram A c p with pi - A; > r ,  hatch the bottom r boxes in the 

- - ik.5 r < r 5 ik+1 < . . . < i, 5 1 to-such ($1, .  . . ,6,) that e;, = . . . = ti2 = +, = 

written " as TI (7)  (U) = CbESpinsp(i(b); U). This type of L has also been utilized in [KN]. 

leftmost column, which we call an L-hatched~skew-Young diagram,A c p. See figure 3. 

m e r e  3. An example of an Lhatched skew-Young diagram r = 4.p = 
(43.3.2, 12). 1 = (3.1). 
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I l l  
I I I ,  

__  

Fire 4. The bottom leR part of an L-hatched ske&-Young tableau and the .ussignmen1 
of the letters (ir) and (4) in (4.2). 

Consider a tableau b on it, namely, a map b : Gbatched A C @ --z J .  We call a tableau 
b on an L-hatched h c @ L-admissible if and only if all of the following three conditions 
are valid (n = @; - (p’, - r) and see figure 4 for the definitions of il and j l):  

(i) hatched part E Spin, and (3.1) for non-hatched part 

(iij j o  < il 

(iiij il 5 j l ,  ..., i, 5 j ,  or there exists k E {I ,  ._ . , n }  such that 
- 

i t  5 j1, . . . , ik-I 5 jx-1 and T s-jk 4 ik 5 1 . 

(4.2) 

Here (ii) is void when 
Denote by AtabL(A c @) the set of Ladmissible tableaux on the Lhatched A c p. We 

note that Atab(A c p )  g AtabL(A c p )  and Atab(A c @) 2 AtabL(A c p). Given an 
L-hatched skew-Young diagam A c @. we define the function SkC,(u) by 

SL (U - sp(r(3atchedpart);u) 

- A’, = r and so is (iii) for n = 0. 

lCp ) - bEAfabL(ACp) 

z(b(i, j ) ;  U + 2p’, - r - 2i + 2 j  - 5). 
X n 

(i.j)enoahatched part of O.crr) 

(4.3) 

We have an L * R (left versus right) dual of these definitions as follows. For a skew- 
Young diagram A c @ with @;, 2 r (remember we assumed A;, = 0), hatch the top r 
boxes in the rightmost column, which we call an R-hatched skew-Young diagram A c p. 
See figure 5. 

Consider a tableau b : R-hatched h C p --z J.. We call a tableau b on an R- 
hatched A c & R-admissible if and only if all of the following three conditions are valid 
(n = r - A;,-, and see figure 6 for the definitions of i, and jl.): 
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Figure 5. An example of an R-hatched skew-Young diagram r = 4 . p  = 
(45,3,1),h=(32.2,1).  

Figure 6. The top right pm of an R-hatched skew-Young tableau and the assignment 
of lhe letters (ir) and ( j , )  in (4.4). 

(i) hatched part E Spin, and (3.1) for non-hatched part 

(ii) il < jo 

(iii) j j  5 i l ,  . . . , j,, 5 in or there exists k E { 1 ,  . . . , n} such that 
. .  

jI i 1 1 ,  ..., jk-l i ix -1  and 1 5 ik + jk 5 r 

(4.4) 

where (ii) is void when p;, = r and so is (iii) for n'= 0. 

we define 

Sfcp(U) = sp(i(hatchd part); U) 

Denoting by AtabR(A c p )  the set of R-admissible tableaux on the R-hatched A-c p, 

beAtabn(Acp) 

X n z(b(i ,  j ) ;  U - 2/11 + r - 2i + Zj + ;) . 
(i.j)Enon-hatched part of (ACp) 

(4.5) 

Our first main result in this section is 
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Theorem 4.1. 

(4.6~~) 

(4.66) 

... 
‘ H ~ ( M )  = c(-1) I TI (0 (u + U ) T , d u  + m  + r + l -  $1. (4.7c) 

;=0 

From equations (4.6a), (4.7~). (4.7~) and theorem 3.1, X ; ( u )  is equal to the L-hatched 

For an R-hatched diagram A c p, let e c q be the sub-diagram obtained by removing 
hook S&+l.,,-l,(u). 

the rightmost column of h C p. See figure I. 

Figure 7. An R-hatched skew-Young diagram for r = 3 with @ = 
(s4. 3.2, l ) .  A = (4.3, 12). The broken lines are guides to eyes for defining 
4 = (43. 3,2, 1). E = (3, 12). 

Thus, for example, qi = p, - 1 for 1 6 i < p:, - Then another main result in 
this section is the R-hatched version of the previous theorem as follows: 

Theorem 4.2. 

where 

(4.8~) 

(4.8b) 
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(4.94 

From equations (4.8a). (4.9u), (4.9~) and theorem 3.1, one sees that 'HE(u) is equal to 
the R-hatched 'dual hook' S& ,-,) cccm+l,r,(u). From theorems 2.1, 4.1 and 4.2, we have 

Corollary. SkC,(u) and S:w(u) are pole-free provided that the BAE (2.1) holds. 

Following a similar argument to the previous section, we propose the Drinfeld 
polynomials corresponding to the auxiliary spaces Wkc,(u) and Wfcp(u)  of Skcp(u) and 
S&, (U), respectively, 

(4.10~) 

(4.10b) 

(4.11~) 

(4.116) 

where we assume (3.12). 
In AtabL(A c p)  and AtabR(A c p), we have considered the hatched part (Spin (4.1)) 

only in the bottom left or top right position. A natural question may be whether it is possible 
to define a tableau sum that becomes pole-free and contains Spin simultaneously in various 
places in a skew-Young diagram A C p. It is indeed possible to include Spin both at the 
bottom left and the top right. However, we have found only a few examples beyond that 
so far. 

5. Solution to the T-system 

The functions Thcp(u) (3.2), $&(U) (4.3) and S*Rcp(u) (equation (4.5)) provide the solution 
to the T-system for E,, one of the functional relations proposed in [KNS] for any X , .  (See 
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[KS2] for the T-system of twisted quantum Affine algebras.) Form E Zzo, put 

T , ) ( U )  = T{, , ,~)(U) 1 < a < r - 1 (5.la) 

TZ)(u) = T(#&) (5.16) 
T(r) *m+l(U) = S((,,l)?)(U L - m) = S((m+l)r)(u R + m ) .  (5.1~) 

The latter equality in (5.1~) can be shown easily by using (2.14), (4 .7~)  and (4.9~).  The 
definition (5.1) includes (2.10). Moreover, from (3.11) and (4.10), (4,11), the Drinfeld 
polynomial corresponding to T>)(u) is given by &(c) = (nyz1(c - U + y))8b' for 
1 < b < r ,  in agreement with (2.3) of [KSl]. Thus T, ) ( IL )  here is the DW for the transfer 
matrix T , ) ( u )  considered in [KSl]. 
Theorem 5.1. T , ) ( u )  defined above satisfies the following functional relations: 

~ , ) ( u  - l)~$)(u + I) = T,:] (U )T ,? , (U)  + T, - ' ) (~ )T$+ ' ) (u)  

T$yu - l)T.y)(u + 1) = T;;l)(u)T;il)(u) + T p ( u ) T z ( u )  
p - L)T(')(u + L) - T(') 6) a ( 2 2 - ~+l~u~Ta-l~u~T:-l~(u - $ ) T P ( U  + 4) 
T&)+](U - 4)T&)+,(u + I) 1 - - 74') h+z(u)T&)(u) + T:-l)(U)T;y(u). 

for 1 < a 6 r - 2 

(5.2) 

Ourline of rhe prooJ We use the determining expressions (3.57) and (4.6~).  Then the 
first two equations in (5.2) reduce to the Jacobi identity (cf [KNS] equations (2.20)- 
(2.22)). To prove the third equation, substitute ( 4 . 6 ~ )  into T&Ll (u)T&L1 (U). Expanding 
the determinants with respect to the first column, we have 

x (T'+j+' ( u - m + i +  j+$)+T'+'-j(u-m+i+ j+$))  

Here, RY' denotes the cofactor of Ty)(u - m + Zj) in T&)+](u) and we have used (2.14). 
On taking the j-sum, the T'+j-i-l (u - m + i + j + l) term vanishes. After taking the 
i-sum, the Tr+'-j(u - m + i + j + 5) term is non-zero only for j = 0 or j = m. Noting 
that R$") = T&)(u + f) and Rim) = T;-')(u - f), one has the third equation. The last 
equation in (5.2) can be verified similarly. We remark that theorem 5.1 is valid for T i ) @ )  
defined through any Qb(u)'s, not necessarily solutions to the BAE (2.1). 

The functional relation (5.2) is the unrestricted T-system for B,, (3.20) in [KNS] 
(in a different normalization). There was a factor & ) ( U )  in each equation as 
T,)(u + I)T,)(u - l) 1, = T~~,(u)T~?,(u) +&) (U) ( .  9 .). The &(U) is 1 here because 
we are cohdering the case where vacuum part = 1. The choice (5 .1~)  has been conjectured 
in (4.20) of [KSl] including the vacuum parts. The case r = 2 had been proved earlier [K]. 

It may be interesting to regard U and m as discrete spacetime variables and consider 
(5.2) as a discretized Toda equation. Actually, a 'continuum limit' of (5.2) (with & ) ( U ) )  

under an appropriate rescaling of U ,  m and & ) ( U )  leads to 

(a,' - 8;) logba(u, m )  = constantnb,,(u, m)-Aob 

b=1 

where $,,(U, m )  is a scaled T , ) ( u )  and Aob = 2(or,[1y~)/(a&~) is the Cartan matrix. The 
constant above can be made arbitrary by choosing the & ) ( U )  suitably. We remark that the 
T-system proposed in [KNS] has this aspect for all the classical simple t i e  algebra X,. 
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6. On vacuum parts and BAE in terms of the Drinfeld polynomial 

So far we have treated the case where the quantum space is formally trivial. This corresponds 
to choosing the LHS of the BAE (2.1) to be just -1 and the vacuum parts in the DVFs TlCp(u), 
Skc,(u) and S?cp(u) to be 1. To recover the vacuum parts for the non-trivial quantum space 

(6.1) N w(ij 
Q k l  

one needs to know the corresponding BAE. Assuming that each WF) in (6.1) is a 
finite-dimensional irreducible Y i B r )  module 
p:)(c) ( 1  6 a <r), we conjecture the BAE: 

‘l 

P.(O = n P d ” ( 5 ) .  
i=l 

Here we understand that q -+ 1 in (2.2) for 

characterized by the Drinfeld polynomial 

Y ( B , ) .  (On the other hand, for generic q ,  
we suppose that (6.2) is the correct BAE for U4(B!1)) if P!)(<) is replaced by a natural 4- 
analogue.) The equation (6.2) has been formulated purely from the representation theoretical 
data, the root system and the Drinfeld polynomial. Thus we suppose that it is the BAE for 
any Y ( X , )  (or Uq(X;’))  in the trigonometric case). This is actually true~for all the known 
examples in which alternative derivations of the BAE are known such as the algebraic Bethe 
ansatz. It is also agreed in [ST]. Once equation (6.2) is admitted, the vacuum parts are 
determined uniquely up to an overall scalar by requiring that the pole-freeness is ensured 
by (6.2). This is a straightforward task and here we shall only indicate the initial step 

Redefine z(a; U) (2.4) and sp(f1, .  . . , f?; U) (2.5) by multiplying the vacuum parts 
concerning theorems 2.1 and 2.3. ~ .~ 

vac(. . .) (cf equation (2.9a) in [KSI]): 

( 6 . 3 ~ )  

(6.3b) 
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nb =tt{ j  I t j  =-, 1 < j < b }  (6.4b) 

In terms of z(a; U) involving the above vacuum parts, redefine P(u) by ( 2 . 7 ~ )  assuming 
x&(u)  = %(U + 2 ) X  (1 < b < r), and modifying the RHS into 

It is easily seen that this Tn(u) is o f  positive order 2b with respect to the function 
(equation (6.2)). One can check that theorem 2.1 is still valid (for T;'(U) and Tn(u)) for 
the BAE (6.2). Relations (2.17~~) and (2 .13~)  also hold if the right-hand sides are divided by 
F.(u) and F ~ - - l - ~ ( u ) ,  respectively. Thus theorem 2.3 remains valid without any changes. 
Along these lines, one can proceed further to include the vacuum parts for general T l c e ( ~ ) ,  
SkCp(u) and S&p(~)  so that they become pole-free under the BAE (6.2). 
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