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Quantum Jacobi-Trudi and Giambelli formulae for U, (B®)
from the analytic Bethe ansatz
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1 Institute of Physics, University of Tokyoe, Komaba 3-8-1, Meguro-ku, Tekyo 153 Japan
1 Faculty of Engineering, Hiroshima University, Higashi Hiroshima, Hiroshima 724 Japan

Received 30 June 1995

Abstract. The analytic Bethe ansatz is executed for a wide class of finite-dimensional U, (B('))
modules. They are labelled by skew-Young diagramns which, in general, contain a fragment
corresponding to the spin representation. For the transfer matrix spectra of the relevant vertex
models, we establish a number of formulae, which are U, (B™") analogues of the classical
ones due to Jacobi~Trudi and Giambelli on Schur funcnons They yield a full solution to
the previously proposed functional refation (T-system), which is a Toda equation on discrete
spacetime.

1. Introduction

In [KS1] the analytic Bethe ansatz was worked out for all the fundamental representations
of the Yangians Y(X,) of cla531ca1 types X, =-B,,C; and D,. Namely, for any a €
{1,2,...,r}, arational function A )(u) of the spectral parameter u has been constructed,
which should describe the spectrum of the transfer matrices of the corresponding solvable
vertex models. It is a Yangian analogue of the character of the auxiliary space and satisfies
a couple of conditions required for it. In particular, A Y(u) has been shown to be pole-free
provided that the Bethe ansaiz equation (BAE) holds. These results are also valid for the
U,(X™M) case as after replacing the rational functions by their natural g-analogues. See
[R, KS1] for general accounts on the analytic Bethe ansatz.

In this paper we extend such analyses beyond the fundamental representations for
X, = B,. We introduce skew-Young diagrams A < pu [M] and a set of tableaux on
them obeying certain semi-standard-like condifions. Then we construct the corresponding
function T, (#) in terms of a sum over such tableaux via a certain rule. The T (1) is to
be regarded as the spectrum of the commuting transfer matrix with auxiliary space labelled
by A C p. It has a dressed vacuum form (DVF) in the analytic Bethe ansatz. We shall rewrite
Ticu(u) in several determinantal forms, where the matrix elements are only those T, (u) for
the usual Young diagrams with shapes p = (1%}, (m) or (m-+ 1, 1¥). They can be viewed as
U, (B analogues of the classical Jacobi-Trudi and Giambelli formulae on Schur functions
[M]. Pole-freeness of the Ty (1) under BAE follows immediately from these formulae and
our previous proof for the case u = (1%) [KS1]. These results correspond to the case where
the auxiliary space is even with respect to the tensor degree of the spin representation.
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We shall simply refer to such 2 case as spin-even and spin-odd otherwise. See the remark
after (3.12) for a precise definition. We will also treat the spin-odd case by using modified
skew-Young diagrams and semi-standard like conditions on them. Combining these results,
we obtain a full solution in terms of the DVF to the transfer matrix functional relation (T -
system) proposed in [KNS]. This substantially achieves our program raised in [KS1] for
B,.

A natural question here is, what is the finite-dimensional auxiliary space labelled by
those skew-Young diagrams as a representation space of U, (B") or ¥(B,)? We suppose
that it is an irreducible one in view that all the terms in Ty, (#) are coupled to make the
associated poles spurious under BAE. Moreover, we specify, in the Yangian context, the
Drinfeld polynomial explicitly based on some empirical procedure. We shall also determine
how the imreducible Y(B,) module decomposes as a B, module through the embedding
By — Y (B,) for the spin-even case.

This paper is organized as follows. In the next section we recall the results in [KS1]
on U,(B{Y). We then introduce the basic functions T%(x) and T,,(x) for all @,m € Zzo.
These are analogues of ath anti-symmeiric and mth symmetric fusion transfer matrices (or
its eigenvalues), respectively. For 1 € a € r — 1, we have T%(x) = Aga) (1) = Taay(u)
in the above. The introduction of T¢(u} with 2 2 r is a key point in this paper and we
point out a new functional relation (2.14) between them. In sections 3 and 4, we treat the
spin-even and odd cases, respectively. In terms of the DVFs in these sections, we give, in
section 3, a full solution to the T-system [KNS] with an outline of the proof. Until this point
we will consider exclusively the situation where the guantum space is formally wrivial. This
means that the vacuum part in DVF is always 1 as well as the ‘left-hand side’ of the BAE.
In this situation, the DVFs in theorems 2.1, 3.1, 4.1 and 4.2, in fact, become constants if the
BAE (2.1) is valid. Section 6 includes a discussion on how to recover the vacuum parst for
general quantum spaces, and make the DVFs z-dependent while keeping their pole-freeness.
A prototype of them is a tensor product of the irreducible finite-dimensional modules such
as (6.1). The problem is essentially equivalent to specifying the left-hand side of the BAE
{cf section 2.4 in [KS1]) for such a general quantum space. For the Yangian Y(X,), we
propose quite generally for any X, that it is just given by a ratio of the relevant Drinfeld
polynomials}: see equation (6.2). Then we shall briefly indicate a way to recover the
vacuum parts.

Many formulae in section 3 are also formally valid for U,(A%} under a suitable
condition. In particular, the A = ¢ case of (3.5) has appeared in [BR], for which a
representation theoretical background is available in [C].

We hope to report similar results for C, and D, cases in the near future.

2. Review of the results on fundamental representations

Here we shall recall the B, case of the results in [KS1]. Let {a;, ..., e} and {A{,..., A;}
be the set of the simple roots and fundamental weights of B, (r 2 Z). Our normalization is
==t = %tr = | for t, = 2/(atalea). Then (2lop) = }%‘ 2.6 — 8a.6-1 — Su,b41 and
(22| Ap) = 8ap/ta. The U,(BY) BAE for the trivial quantum space reads [RW]

r (a}
~1=]] vy + (o)) for 1<a<r I<kEN, 2.1)

et O — (2ales))

1 We thank E ¥ Sklyanin and V O Tarasov for a discussion on this point.
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Ny
Qu() = [ [[ — v 2.2)
=1

where [#] = (g* —g7™*)/{g — g~ ') and Ny, ..., N, ate some positive integers. Throughout
the paper we assume that ¢ is generic. The LHS of (2.1} is just -1 as opposed to the
non-trivial quantum space case (6.2), which will be discussed in section 6. Until then we
shall focus on the dress parts in the analytic Bethe ansatz.

Following [KS1] we introduce the set J and the order < in it as

J={1,2,...,r,0,7, ..., 1} (2.30)

<2<+, xr<0=<F<---,<1. (2.3b)

For a € J, define the function z(a; u) by
Qulu+a+ 10 +a—~2)

=y et a- DO.w T Sesr

oy O utr—=0u+r+1)
o) = O (u+nrQu+r-1) @4)
z(&;u)zQa_,(u+2r--a—2)Qa(u+2r—a+1) l<agr

Q—i(u+2r —a}Qalu+2r —a—1)

where we have set Oy(u) = 1. z{a, ) is the dress part of the box E in (4.4a) of [KS1],
which corresponds to a weight in the vector representation. For (&, ..., &) € {Z}, define
the function sp(£1, ..., &; ) by the following recursion relation with respect to r and the
initial condition r == 2:

Sp('i', +. ‘!5-3v ey “;:r; u) = TQSP(+’ '{::3’ seey ‘EI‘; u)

Qiu+r—3) ,

SP(+,—,§3,...,§,.;M) T SP(—’§3:---v$r;u)

T Oiutr—1) s
Qi+r+d "
5P("=+s$3=---a$r;u)=m;_ffgsp(+,§3,---,§r;u+2)
1 —3
Sp('_’—s“;:B;---:fr;u):TQSP<_!EB~:---1':&J';“+2)
o Gu—3)
y+; = —_—
RAARER Al Wiy
(e — 2302 (u + 3)
) =
P DO+ D) o5
(e +,H)ZQI(u+§)Qz(u+%) '
P Gt Do+ 3)
oy Qe D
sp(—, ,u)—Qz(u+%)-

In equation (2.5a) r2 is the operation O, = Q,1;, namely,

2F(Q1(u + x1), Qi+ x3), ..., Oa(a +x3), Q2w +x2),...)
' = F(Qa(n +x1), Qo +x3), ..., @3 +xP), O3(u+x3),...) (2.6)
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.
e —
for any function F. sp(&, ..., &; u) is the dress part of the box in (4.25)
and (4.26) of [KS1].
Now we introduce the meromorphic functions T7¢(u) and 7, () of « for any a, m € Zxg
by the following ‘non-commutative generating series’:

A+ 2z 0X) - (1 +2F WX — z(0; )XY N1+ 2(r; )XY - -« 1+ z(1; 1) X)

= Z T (w+a—-1X° 27a)
o=
(12X~ (L= 20 @)X (1 + 200, )X — 2F ) X) oo (4 — 2(T; ) X)7!
=Y Tulw+m— DX (2.7b)
m={0

where X is a difference operator with the commutation relation
X0.u) = C.u+DDX foranyl1€a<r. (2.8)

Thus Xz(a; u) = z{a;u + 2)X for any a € J, We set Tu) = T, () =0 fora,m < 0.
An immediate consequence of the above definition is

N
By = ) (=Yg +i+ T (ke + ) (2.92)
k=0
Nl - l .
=Y (Y il — i =T~k = ) (2.96)
k=0

forany N > 0and 0 <, j £ N. Define Tl(“)(u) for1<a<rby

T w) = T%(w) for 1gagr—1
TPw= Y spl&,....&:u). (2.10)
5l b=

Then T, () coincides with the dress part of A\® () in [KS1] forall 1S a < r.

Theorem 2.1. T,f"(u), T#(u) and T, (u)}(¥Ya,m € Z) are pole-free provided that the BAE
(2.1) holds.

For T,(r) (u) and T°(n) with a < r — 1, this was proved in [KS1] in the more general setting
including the vacuum parts. The other cases can be verified quite similarly. Tlm(u) and
T.‘(r) (#) were considered earlier [R].

The functions z(a; «) and sp(&1, - ... & ; u) are related as follows. Given two sequences
E,...;&8)and (m,..., ) ef£Y, wedefine iy < -~ <, T <- - <L, 0Kk <H)
and f < --- < ji, i < -+ < oy (0 £ 1 € r) by the following:

G, = =f =+  Ey==f=—

Ny=-r=1y=— ny=-=p,=+.

(2.11)

Then we have
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Proposition 2.2. For any @ € Zzo,

splér, .. Esu—r+a+sp(m.....nsu+r—a—3)

a
= [[e@nu+a+1-2n) if k+I1<a (2.120)
n=l
where
in for 1<ngk
b,=10 for k<n<a-=I (2.12b)
Jat1—n for a—I<n<a

For any a € Zgpe1,

sp(ér, . Ein—r+atLsp(m, ... nsu+r—a—3)

2r—]—a
= [] «bput+2r-a-20)  if k+iza+] (2.13a)

n=1

where
I for 1€ngr-1!

=0 - for r=l<n<gr+k—-1—a (2.130)
by o for r+k~1l—a<n<r—1—a. '
This enables the evaluation of the product sp(&1, ..., §;u—r +a+%)sp(m, ey T H

r—a-— %) for any {&}, {#:} and @ € Z in terms of z (equation (2.4)). For 1 €a<r —1,
(2.12) is theorem A.l in [KS1]. It is straightforward to extend it to any @ € Zsg.
Equation (2.13) can be derived from (2.12) by replacing @ by 2r — 1 — 4. Note in (2.125}

thatby <+ < by <bypy =+ - =by=0<by_yoy <--+ < by € J. A similar inequality
holds also for b,. Comparing them with (2.72) and (2.10) we get

Theorem 2.3.

T+ T 12wy =T u—r+a+ DT +r-a-1)  VaeZ. (2.14)

This is invariant under the exchange ¢ & 2r —1—a. fa <0 ora > 2r — 1, there is
in fact only one term on the LHS. The new functional relation (2.14) will play an important
role in this paper. It is also valid after including the vacuum parts. See section 6.

3. Spin-even case

Let s = (@, p2, ..., 41 2 p2 2 -+ = 0 be a Young diagram and " = (2, @5, ...} beits
transpose. We let d, denote the length of the main diagonal of . By a skew-Young diagram
we mean a pair of Young diagrams & C u. It is depicted by the region corresponding to
the subtraction g — A. See figure 1, for example,

For definiteness, we assume that A, = Ay = 0. A Young diagram g is naturally
identified with a skew-Young diagram ¢ C u. By an admissible tableau b on a skew-Young
diagram A C p we mean an assignment of an element &(i, j) € J to the (i, j)th box in
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Figure 1. An example of a skew-Young diagram A C u. Here p =
(5.4, D, A=(2 D, 1 =1(4,3, 1) and &’ = (2, 1), respectively. The lengths
of the main diagonal are given by d; =3 and d,, = 1.

A ¢ ¢ under the following rule: (we locate (1, 1) at the top left corner of &, (( -+ 1, j) and
(i, j + 1) to the below and the right of ({, j), respectively.)

bi, ) <bG, j+1) b{i, /) < b +1,7) with the exception that

3.1)
b(i, j) = b(i, j + 1) = 0 is forbidden b{i, j) =58 +1, j)=01is allowed . (

Without the exception this coincides with the usual definition of the semi-standard Young
tableau. Denote by Atab(A C i) the set of admissible tableaux on A C u.

Given a skew-Young diagram A C u, we define the function Tocu (o) as the following
sum over the admissible tableaux:

Tiew@ = Y. J] 2@Gikutp-p—20+2/). (32
beAtab{Acu) (L e(Acu)

Comparing this with (2.7) we have

T%u) = Tyn(w): single column of length @ (3.3a)
T () = Tey (1) single row of length m. (3.3b)

We also prepare a notation for the single hook,
Thy =Ty an(a) . (3.3¢)

QOur main result in this section is

Theorem 3.1.
( 0 .- 0 Rn -+ Ru,
0 -~ 0 Ry --- Ryg
Tic, (1) = det - e 3.4a
hew () Cu -+ Cua Hy -+ Hy, (34a)
\Cy1 - Caa Haa oo Hya,
where

Rij =Ty pui-jltpy—m+p+ri—i=j+1)
Cyj=—TH N Mt pf—pa—pj — A +i+j—1) (3.4b)
Hy=Tyoip-j+py—p—pi+p+i—j).
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Two particular cases corresponding to the formal choices p; = A; or u; = A] for
1 £ i € d) = d, yield simpler formulae. In these cases, redefining g;, 1!, A; and A so that
l‘;“ = Ay = 0, we have

Tycu(®) = oty jeuy (T (b @y — oy — g — X i+ — 1)) (3.50)
= detigi jeg; (T a8 + py— i+t —i—j+ D). (3.56)

Equation (3.5a) can be verified, for example, by induction on 1, ie. by showing the
same recursive relation for the tableau sum (3.2) as an expansion of the determinant. Then
(3.5b) foliows from (2.9). Theorem 3.1 is proved from these results by applying Sylvester’s
theorem on determinants. From equation (3.5a) and theorem 2.1 one has

Corollary. Tjr,(x) is pole-free provided the BAE (2.1) holds.

The admissibility condition (3.1) leads to the above conclusion although it is by no
means obvious in the defining expression (3.2). Despite the exception in (3.1), our formulae
(3.4) and (3.5) coincide formally with the clagsical ones due to Giambelli and Jacobi-Trudi
on Schur functions [M] if one drops the « dependence (or in the limit ju| - o). If
Koy — A; > 2r for some i, Atab(h C u) = ¢. Correspondingly, one can show that
the determinant (3.5¢) is vanishing using the fact that T%(x) factorizes for ¢ = 2r due
to theorem 2.3. Henceforth we assume that g, — A < 2r for 1 <4 € pg. (We set
H :t1+l = —00.)

The Thcp(u) (equation (3.2)) describes the spectrum of the transfer matrix whose
auxiliary space is labelled by the skew-Young diagram . 'C u and u. Denote the space by
Wicn (). We suppose it is an irreducible finite-dimensional module over Y (B,) (or U, (B!}
in the trigonometric case) in view that all the terms in (3.2) seem to be coupling to make the
apparent poles spurious under BAE. Now we shall specify the Drinfeld polynomial P, ()
[D] that characterizes W), (1) based on some empirical procedure. Our convention slightly
differs from the original one in theorem 2 of [D] in such a way that

= k=1 _ PJ(€+ I/ti)
1+§d,k1; =0 (3.6)

For any b € Atab(A < u), the comresponding summand (3.2) has the form

Le Qalu+x7) ... Qalu +xf)
=1 Qo+ y7)... Qalu+ y,ff,)

(3.7

where x7, y7 and i, are specified from b. This summand carries the B,-weight

wi{p) = 2(52“- Za:(yf - xjf)) Ag (3.8)

a=1 J=1

in the sense that limgi_, o (3.7) = g =216} Toss Moeze) | From Atab(h C pu), take by such that
wt(by) is highest, which corresponds to the ‘top term’ in section 2.4 of [KS1]. In our case,
such a by is unique and is given as follows, Fill the left most column of A C u from the top
to the bottom by assigning the fizst w} — A} letters from the sequence 1,2,...,r,0,0,....
Given the (i — 1)th column, the ith column is built from the top to the bottom by
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1
1 2
2
1 3
210
3]0
ol 3
0
Figure 2. The way to assign the letters to each box is explained in the text. This is an
0 example for r =3, &’ = (9,7,2). 4" = (3, 1). Notice that zeros are arranged so they are
not adjacent horizontally.

E
e e, [ —_

taking the first 4} — A} letters from the sequence 1,2,...,r,0,...,0,7,r — 1,..., 1, where

k = max(0, min(x;_, — Aj, . — A} — ). (We set Ay = +-c0.) See the example in figure 2.
It turns out that (3.7) for the top term &y can be expressed uniquely in the form

oM a 42— 1/t
[ Qe+ - 6o

a=1j=1 ,Qa(u + Z; +1/ta)

for some M, and {z}fll < J € Mg} up to the permutations of zj?’s for each a. We then
propose that the Drinfeld polynomial Paw""“("} (&) for Wy, (u) is given by

M, _
PPO@ =Tl -v-2)  1<axr. (310
J=I

In our case, it reads explicitly as follows:

PPy = T] ¢ —u—wf+pm+1+a+24-20)

1€igm
B —Ai=a

x J] @-w—pl+m+2+a+2x-2) I1<a<r—1
1<igp, =1 '
Wi—h=2r=a

(3.11a)
Wm(“)(;) = @ —u—-p Il =2 — 3
, = H pyF g 20 =2 — 7+ 3)

1sigm
MArSu AL+

x J] @-e-si+m+22i-2i4r+D (3.11b)
I=ig
By SHrrSH

where we have set

LLL[+1 = -0 A’O =00. (3-12)
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We will call the irreducible finite-dimensional ¥(B,} module spin-even (respectively spin-
odd) if and only if the characterizing Drinfeld polynomiat P.(Z) is even (respectively odd)
degree. The one in (3.115) is even for any skew-Young diagram A C u. For example, in
the case of the single column or row (3.3), (3.11) reads

— u)%e I€c<r
w“c’(u}(é' )= ¢-w : 1 dar N (3.130)
(C-—utec—r+DC—u—c+r—D) czr
POy = (C~utm—1E —u4+m=3) ... —u—m+1)™. (3.13b)
As a B, module, the Y(B,) module W), () decomposes as
Wicu(w) & Y (Z LRfULRE’ZK),n) Zoeren(Vy) (3.14)
] KV

which is u-independent. Here LR}, etc denote the Littlewood-Richardson coefficients
for the universal character ring A of GL-type introduced in [KT}. The sums run over all
the Young diagrams n,v and k = (x1, 42, ...), where (2«)" stands for the transpose of
2k = (211, 26, . ... wopr4n(Vy) is the image of the specialization homomorphism [KT].
It is equal to (1 or 0) ‘times’ the irreducible B, module V. with the highest weight
labelled by the Young diagram n* with (7*); € r. They are determined according to the
equality mo@-+1{x (1)) = (£l or 0} x x(n*) at the character level [KT].

4. Spin-odd case
Consider the following subset Spin C Atab((1)):

i < <iped
! € Spin < { 0 is not contained
only one of { and { is contained for any 1 <i < 7.~ (4.1)

There is a bijection ¢ : Spin — {(E], ooy &) | § = 4} sending (4.1) with 1 < <--- <
e <r <F S by <--<i <1to such (&.,.. Gythat & = =§& =+, =
.+ = £~ = —, where we interpret k =i if k = i. Thus the latter of (2.10) can also be
written as T ") W) = ZbeSpm sp(t(bY; u). This type of ¢ has also been utilized in [KN].
For a skewaoung diagram A C p with g — A{ > r, hatch the bottom r boxes in the
leftmost column, which we call an L-hatched skew-Young diagram A C j. See figure 3.

Figure 3. An example of an L-I;atched skew-Young diagram r = 4, u
@,3,2,19),A=3.1.
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Io

Figure 4. The bottomn left part of an L-hatched skew-Young tableau and the assignment
of the letters {i;} and {j;} in (4.2).

Consider a tableau b on it, namely, amap & : L-hatched A & & — J. We call a tableau
b on an L-hatched A C p L-admissible if and only if all of the following three conditions
are valid (n = p;, — (1] —r) and see figure 4 for the definitions of i; and ji):

(i) hatched part € Spin, and (3.1) for non-hatched part

(i) jo< 1
o s s . . “.2)
(it} iy < jr, .-, iy = ju Or there exists £ € {1, ..., n} such that

B2 Jtaeeeyipm S o1 adF £ fr<ip < 1.

Here (ii) is void when g{ — A] = r and so is (iii) for n = 0.

Denote by Ataby (A C p) the set of L-admissible tableaux on the L-hatched A C p. We
note that Atab(A < u) € Atabp(A C ) and Atab(A C u) 2 Atab (A C u). Given an
L-hatched skew-Young diagram A C u, we define the function S}_‘Cu(u) by

She,(u) = Z sp(i(hatched part); 1)
behualy (AC)
— ; . . 3
x 1_[ Z(b(h]),u'l'zﬂel—i’—21+2;—i—).
(7, fyenon-hatched part of (ACu)
4.3)

We have an L < R (left versus right) dual of these definitions as follows. For a skew-
Young diagram A C p with ].L'_Ll > r (remember we assumed A;h = 0), hatch the top r
boxes in the rightmost column, which we call an R-hatched skew-Young diagram ) < p.
See figure 5. ) )

Consider a tableau &# : R-hatched A € & — J. We call a tablean 5 on an R-
hatched A C p R-admissible if and only if all of the following three conditions are valid
(r=r—A&, _; and see figure 6 for the definitions of 7 and j.):
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Figure 5. An example of an R-hatched skew-Young diagram r = 4,4 =
@.3,1),A=03%2,1.

I { Figure 6. The top right part of an R-hatched skew-Young tableau and the assignmment
I of the letters {i;} and {ji} in (4.4).

(i) batched part € Spin, and (3.1) for non-hatched part
(1) i1 < jo

(itl) jy < i1, ..., jo < i, or there exists k € {1, ..., n} such that

(4.4)

hZb, e Bheand 1 2 < o 21

where (if) is void when w),, = and so is (iii) for ©' = 0.
Denoting by Atabg(k C ) the set of R-admissible tableaux on the R-hatched A-C u,
we define

Sfcu(u) = Z sp(i(hatched part); )
beAtabr{ACy)

X 1—[ Z(b(i,j);u—2p1+r_25_|_2j+%)_
(i, jyenon-hatched part of (ACg)
(4.5)

Our first main result in this section is
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Theorem 4.1.
Sicu(®) = detigi.jgp (i) (4.6a)
=L
= detigi j<p (S;j); (4.6b)
where
T M R TR R R e it P 47a)
YT 10 + 2 — 24200 — X — ) i=1 '
Tyimpgmi i F 207 + pr+ A =i = j—r —3) 1<j€X
S = Mo oy 207 — 207 — 20) YS! (4.7b)
Tymigjmt W+ 205 + i —i—j —r+3) J>AM+1
m
Hu@) =Y (DT + DTt +m+r+1=3). @.7¢)
I=0

From equations {4.6a), (4.7a), (4.7¢) and theorem 3.1, HL (x) is equal to the L-hatched
hook S(I;"H‘l,_,](u).

For an R-hatched diagram A C £, let £ C 5 be the sub-diagram obtained by removing
the rightmost column of A C p. See figure 7.

Figure 7. An R-hatched skew-Young diagram for r = 3 with u =
(5%,3,2, ), A = (4,3,12). The broken lines are guides to eyes for defining
—————— n=321,§=019.

Thus, for example, n; = g — 1 for I i < ), — A}, _;- Then another main result in
this section is the R-hatched version of the previous theorem as follows:

Theorem 4.2.

Sfc,u.(”) = detigi j<u, (5,-};) (4.8qa)
= det) i jgn, (ER,E,-) (4.8h)

where

TH=F=iey oy ot N i fr L i<y —1
s.R.—-[ -2 — g =X +i+tj+r+  J<m “9a)

Y 7 — 200 — 20 + 20 +-27) j=m
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=R { Tmgminj@ =20y = 2mt 5 —i—j+r+d  iFn -t

T Mgt @ = 20, 20 = g,
(4.95)
Huw) =Y (D' — 20Ty ~m—r 1+ 1. (4.9¢)

=0

From equations (4.8a), {(4.9a), (4.9¢} and theorem 3.1, one sees that HE (1) is equal to
the R-hatched ‘dual hook’ S{ e _H),)(u). From theorems 2.1, 4.1 and 4.2, we have
Corollary. § lcu (1) and § Cu(”) are pole-free provided that the BAE (2.1) holds.

Following a similar argument to the prewous sectlon, we propose the Drinfeld

polynomials corresponding to the auxiliary spaces W, lcu () and xcu(u) of Sk . (#) and
Sk, (1), respectively,
w;_c”(“)(g) WJ.C#(“+F‘-1+M1 —r— 2)(;) I -'-..<._ a -..<.,_ r— 1 (4.10‘2)
) I Wacu(atat)+i1—r—3)
PJ" A.C.u = P H 1 2
® =P @
= J] @-u+3+20—i—p)
2gispyy . '
MAErSpSAl_
x ] @-w+2+4205~i-p+r) {4.10B)
1gigu
Wiy A TS0
Pl (py o pRAETITID 1y 1 <agr—1 (4.11q)
ch’u(u)(é_) 1 Prwac“(u—ul—n|+r+%)(§)
F—u-—1 -
= JI @-w+2f~itp—r)
I<igu,
MArSm a4+
x I ¢-a—14+20f-i+mp (.115)

I<iguy~1
Hig Sh TS

where we assume (3.12).

In Atabp (A C ) and Atabp(A C p), we have considered the hatched part {Spin (4.1))
only in the bottom left or top right position. A natural question may be whether it is possible
to define a tableau sum that becomes pole-free and contains Spin simultaneously in various
places in a skew-Young diagram A C w. It is indeed possible to include Spin both at the
bottom left and the top right. However, we have found only a few examples beyond that
so far.

5. Solution to the T-system

The functions T {u) (3.2), ch,u(”) (4.3)and S )Lc# (u) {equation {4.5)) provide the solution
to the T-system for B,, one of the functional relations proposed in [KNS] for any X,. (See
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[KS2] for the T-system of twisted quantum Affine algebras.} For m € Zxo, put

T (1) = Timoy (22) I€agr—1 (5.1a)
T () = Towy(t) (5.1b)
T(r In1 (u) S&m-}-])f)(u - m) = S&m-}-])’} (u + m) . (516')

The latter equality in (5.1¢) can be shown easily by using (2.14), (4.7a) and (4.9a). The
definition (5.1) includes {2.10). Moreover, from (3.11) and (4.10), (4.11), the Drinfeld
polynomial corresponding to T, (w) is given by Pp(t) = ([Tf (¢ — u + 2H=Z mel=2i )3 fop

1< 6 <r, in agreement with (2.3) of [KS1]. Thus T,,(;‘)(u) here is the DVF for the transfer
matrix T (u) considered in [KS1].

Theorem 3.1. T@(u) defined above satisfies the following functional relations:
TOw—DTP@+ 1) =T WTL @) + TEYWTE W) for 1<agr-2
T8V - DTV w+ 1) = T @) + T2 @)1 @)

-1 (5 2)
T - DT @+ 1) = 70, T T = DT D@+ b
T - DT @+ 1) = T T @) + TV @1 @) .

Outline of the proof. We use the determining expressions (3.5a) and (4.6a). Then the
first two equations in (5.2) reduce to the Jacobi identity (cf [KNS] equations (2.20)
(2.22)). To prove the third equation, substitute {(4.6a) into Tz(;h_l(u)Tz;)_l (#). Expanding
the determinants with respect to the first column, we have

2(344( ) (") 1(“) ZZ( 1):+JR(m)R(m—1)

=0 j=0
X (T —m i+ j+ D +T @ —m+i+ j+1).

Here, R("” denotes the cofactor of T(")(u —m=+2))in Tz(,','z}_H(u) and we have used (2.14).
On takmg the j-sum, the 77+ -1 (u m+i+ j+ 3) term vanishes. After taking the
i-sum, the 7"~V (u —m+i+j+ 2) term is non-zero only for j = 0 or j = m. Noting
that R™ = 70 (u + 1 1) and RY = T,¢~D(u — 1), one has the third equation. The last
equatlon in (5. 2) can bs verified sum]arly We remark that theorem 5.1 is valid for T w)
defined through any Op(u)’s, not necessarily solutions to the BAE (2.1},

The functional relation (5.2) is the unrestricted T-system for B,, (3.20) in [KNS]
(in a dlfferent normahzat:on) There was a factor g(“)(u) in each equation as
T+ HTOw - 1) = TL, T2, @) + g2 @)+ ). The g (u) is 1 here because
we are c0n51denng the case where vactum part = 1. The choice (5 la) has been conjectured
in (4.20) of [KS1] including the vacuum parts. The case r = 2 had been proved earlier [K].

It may be interesting to regard 1 and m as discrete spacetime variables and consider
(5.2) as a discretized Toda equation. Actually, a ‘continuum limit’ of (5.2) (with g% («))
under an appropriate rescaling of «, m and g(")(u) leads to

(32 — 82) logpa(u, m) = constant | | p(u, m)~A
b=1
where ¢, (#, m) is a scaled TS (u) and A,y = 2(c,lap) /(e |er,) is the Cartan matrix. The

constant above can be made arbitrary by choosing the £ (x) suitably. We remark that the
T-system proposed in [KNS] has this aspect for all the classical simple Lie algebra X,.
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6. On vacuum parts and BAE in terms of the Drinfeld polynomial

So far we have treated the case where the quantum space is formally trivial. This corresponds
10 choosmg the LHS of the BAE (2.1) to be just —1 and the vacuum parts in the DVFs Ticy (1),
sk (1} and Acu(u) to be 1. To recover the vacuum parts for the non-trivial quantum space

N, wi (6.1)

one needs to know the corresponding BAE. Assuming that each W& in (6.1) is a
finite-dimensional irreducible ¥ (B,} module characterized by the Drinfeld polynomial
Pa(")(c) {1 € a <'r), we conjecture the BAE:

_ Pau® /1) 1 26 + @alen))
Po(i” = 1/12) 1 Qo0 — (@talen)

1<k N,
6.2)
Pi(t) = H PR@).
=1

Here we understand that ¢ — 1 in (2.2) for ¥(B,). {On the other hand, for generic g,
we suppose that (6.2} is the correct BAE for U, (B®M) if P¥(¢) is replaced by a natural g-
analogue.) The equation (6.2} has been formulated purely from the representation theoretical
data, the root system and the Drinfeld polynomial. Thus we suppose that it is the BAE for
any Y(X,) (or Uy(X™) in the trigonometric case). This is actually true for all the known
examples in which alternative derivations of the BAE are known such as the algebraic Bethe
ansatz. It is alse agreed in [ST]. Once equation (6.2) is admitted, the vacuum paris are
determined uniquely up to an overall scalar by requiring that the pole-freeness is ensured
by (6.2). This is a straightforward task and here we shall only indicate the initial step
concerning theorems 2.1 and 2.3. o _

Redefine z(a;u) (2.4) and sp(&, ..., & u) (2.5) by multiplying the vacuum parts
vac(- - -) (cf equation (2.9a) in [KS1]):

vacz(a; 1) = HP(u+j—l}l_[P(u+J+1)P(u+r+ )P(u+r— )
J=1 Jj=a
r—1
x[[Plu+2r — @ .  1<agr

j=1
r—1 r~l|

vacz(O;u) = [ [ B +j = DR +r — S [ [ Ptu +2r — HOW) (6.30)
j=1 j=1
r—1

vacz{a; u) = 1_[ Pilu+j—1}P(u+r— %)P,(u +r— %)
jei

r—1
an(u+2r—J)l_[P(u+2r—]—2)CI>(u) 1€a<r
i=l j=a
r b1 1 1
Olu) = HnPb(u+b 2;——)Pb(a+2r—b+2;—1+ ) (6.3b)
b=1j=I

vacsp(&1, ..., Enw) =¥ w) - - 0 (w) (6.4a)
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np=Hjl§=—1<j<b (6.4b)

1 1 1
v ) = HPb(u+r—“b+2]+E_';)Hpb(u+r“b+2.]+2+ ) (6.4¢)

J=0 j=n

In terms of z(a; ) involving the above vacuum parts, redefine T (x) by (2.7a) assuming
XPy(u)y= Pp(u+2)X (1 €& < r) and modifying the RHS into

o0
> Fale+a—DTu+a—DX°

a=0
r a-=1

R =[[[[¥@+r-a=-j+209P@—r+a+}-2.
b=l j=1

It is easily seen that this T%(u) is of positive order 2b with respect to the P, function
{equation (6.2)). One can check that theorem 2.1 is still valid (for T, ) (u) and T9(u)) for
the BAE (6.2). Relations (2.12a) and (2.13a) also hold if the rlght-hand sides are divided by
Fy(u) and F_1_,(u), respectively. Thus theorem 2.3 remains valid without any changes.
Along these lines, one can proceed further to include the vacuum parts for general Thcp, (1),

J.cu () and Slcu (#2) so that they become pole-free under the BAE (6.2).
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